Understanding Formative Assessment
Insights from Learning Theory and Measurement Theory

by Elise Trumbull and Andrea Lash

This paper explores formative assessment, a process intended to yield information about student learning—information that teachers can use to shape instruction to meet students' needs and that students can use to better understand and advance their learning. This purpose—promoting learning by informing instruction—distinguishes it from other kinds of student assessment, such as diagnostic, which is used to identify students who have special learning needs, or summative, which is used by teachers to form final judgments about what students have learned by the end of a course, or is used at the state level for the purpose of evaluating schools.

Increasingly, educators are calling for education assessment systems that are more balanced, and that yield useful information for a variety of education purposes, from how to shape ongoing instruction in the classroom to accountability decisions made at the state level (Darling-Hammond & Pecheone, 2010; Pellegrino, 2006; Wilson & Draney, 2004; Pellegrino, Chudowsky, & Glaser, 2001). They are also calling for coherent systems, in which assessments at all levels (from classroom to state) would be aligned with the same learning goals and views of what constitutes learning and would produce relevant information about student learning over time (Herman, 2010; Pellegrino, 2006).

The purpose of this paper is to help readers understand the importance and potential of formative assessment as a key component of...
a balanced and coherent assessment system—a component that has been somewhat eclipsed by the focus on assessment for accountability purposes. The paper first describes formative assessment and its key features. It then turns to learning theory and measurement theory and their implications for effective use of formative assessment. Subsequent to that, and prior to the conclusion, is a brief review of summaries of research on how formative assessment affects student learning.

Features of Formative Assessment in Classroom Instruction

Black and Wiliam (1998a) characterize formative assessment as "all those activities undertaken by teachers and/or by their students [that] provide information to be used as feedback to modify the teaching and learning activities in which they are engaged" (p. 7). The goal of any modifications to instruction is enhanced student learning. It is often claimed that the practice of formative assessment is rooted in Bloom's concept of "mastery learning," an instructional approach that espouses the use of assessments to gauge students' progress toward mastering a learning goal (Bloom, Hastings, & Madaus, 1971). Bloom suggested that, rather than waiting to assess students at the end of a unit (common practice at the time), teachers use assessments "as an integral part of the instructional process to identify individual learning difficulties and prescribe remediation procedures" (Guskey, 2010, p. 108). According to Guskey, Bloom borrowed the term "formative" from Scriven (1967), who used it to describe program evaluation activities conducted during the course of a program to give feedback on the program's progress so that it could be improved if need be.

Formative assessment does not take the form of a particular instrument or task (Moss, 2008), but is defined by its purpose (Shepard, 2009), which is to help form, or shape, a student's learning during the learning process. Some suggest that formative assessment is better described as a process ("using assessment formatively" [Frohbeiter, Greenwald, Stecher, & Schwartz, 2011, p. 3]) than as a type of assessment (see also McManus, 2008). Erickson (2007) has used the term "proximal formative assessment" to indicate that it is an activity close to instruction (Ruiz-Primo, Shavelson, Hamilton, & Klein, 2002). Erickson (2007) defines it as "the continual 'taking stock' that teachers do by paying firsthand observational attention to students during the ongoing course of instruction—careful attention focused upon specific aspects of a student's developing understanding" (p. 187) in order to make decisions about next steps in instruction (see also Heritage, Kim, Vendlinski, & Herman, 2009). To facilitate this process, the teacher needs to use practices that will reveal not only whether a student appears to have mastered a concept but also how he or she understands it (Pryor & Crossouard, 2005). The assessment practices need to be so well grounded in the instructional process that the information they reveal will identify whether and how instruction should be adapted to advance students' understandings. Heritage, who has made significant contributions to the theory and practice of formative assessment, emphasizes the close linkage—if not the inseparability—of formative assessment, teaching, and learning (Heritage, 2010a).

In theory, any assessment—including a commercially developed test—could be used for formative purposes. However, as Pellegrino et al. (2001) caution, using the same assessments for different purposes tends to lessen their effectiveness for each purpose (see also Shavelson, Black, Wiliam, & Coffey, 2007). For example, it would be difficult to design an assessment for school accountability systems that elicits student performance at the level necessary for fine-grained understanding of individual learning needs without compromising the scope necessary for an accountability measure or without making excessive time
demands for administration and scoring. Such accountability assessments are generally not coupled closely enough to instruction to yield information that would help a teacher think about what a student might need in order to better learn what has been assessed.

To serve a formative purpose, assessment needs to provide actionable information for teachers and students (Heritage, 2010a; Shepard, 2005). Ideally, it reveals something about a student’s progress toward certain learning goals, the student’s thought processes, and any misconceptions the student may hold (Supovitz, 2012). Formative assessment is highly “contingent” on the instructional situation and the student(s) (Black & Wiliam, 2009, p. 12). Thus, it should be tailored to the particular students being assessed, the relevant learning targets, and a specified point in the instructional process; also, it should take a form most likely to elicit the desired learning evidence (Ruiz-Primo & Li, 2011). There can be no prescription for what a single instance of formative assessment should look like. Any instructional activity that allows teachers to uncover the way students think about what is being taught and that can be used to promote improvements in students’ learning can serve a formative purpose.

Formative assessment is often highly integrated with instruction (Herman et al., 2006) and most commonly takes the form of classroom exchanges between teachers and students (or, less commonly, between students). These exchanges have the potential to make students’ thinking explicit and thus open to examination and revision. In this way, the exchanges serve as learning opportunities (Ruiz-Primo, 2011). Given insights into students’ thinking, a teacher is in a position to counter misconceptions and steer learning back on track through feedback or instructional modifications (Black & Wiliam, 2004). Teachers can also mentor students to become proficient at asking their own questions of each other and responding with ideas, reasoning, and evidence, as well as providing feedback to each other (Black & Wiliam, 1998b). Some have called feedback the “linchpin” that links the components of the formative assessment process (Brookhart, Moss, & Long, 2010, p. 41).

Feedback is “information provided by an agent (e.g., teacher, peer, parent, the assessment itself) regarding aspects of one’s performance or understanding” (Hattie & Timperley, 2007, p. 81). Feedback takes on a formative role when it provides information about the gap between a student’s current understanding and the desired level of understanding, and it is most effective for the student when it is targeted at the right developmental level and helps the student identify ways to close the gap (Hattie & Timperley, 2007; Sadler, 1989). Feedback helps students clarify the goals of learning, their progress toward such goals, and what they need to do to reach the goals (Hattie & Timperley, 2007). The challenge for a teacher is to gain insight into students’ way of thinking about the subject matter at hand and to frame feedback that helps them move toward specific learning goals (Black & Wiliam, 2009).

The topic of feedback is large and complex, with a lengthy research history; yet much remains to be done to clarify just how to meet the challenge that Black and Wiliam (2009) identify. Research in classrooms (not laboratory settings) documenting how feedback is used and with what impact over time is particularly needed (Ruiz-Primo & Li, 2013).

Heritage and Heritage (2011) refer to teacher questioning as “the epicenter of instruction and assessment” (title). Teachers’ questioning during instruction may be informal and spontaneous or may be formal and planned prior to the lesson (Shavelson et al., 2008). A teacher’s informal questions to students during class may be for
the purpose of checking certain students’ learning, or for probing more deeply to gather evidence that will yield better understanding of their thinking. At the other end of the spectrum of formative assessment are more formal procedures, such as specific prompts that require a written response and that are embedded in instruction at key points to help identify the next steps needed to advance student learning (Furtak et al., 2008). These embedded tasks may be so integrated with instruction as to seem natural and unobtrusive, or they may be given to students at the end of a lesson, as a separate activity, such as when students make entries in their science notebooks for the teacher to examine later.

Formative assessments can be described along a number of different dimensions. Some of the most salient dimensions are listed in Exhibit 1 above. While formative assessments may vary on a number of dimensions, “the crucial feature is that evidence is evoked, interpreted in terms of learning needs, and used to make adjustments [to instruction] to better meet those learning needs” (Wiliam, 2006, p. 3).

As noted earlier, because formative assessment is so tightly linked to instruction, there is a conceptual question as to whether formative assessment is more like instruction or more like assessment, as traditionally conceived. Some writers (e.g., Heritage 2010a) situate formative assessment within a paradigm of learning and instruction; others (e.g., Phelan et al., 2009) have placed it squarely within a measurement paradigm. The following sections examine formative assessment within each paradigm because both contain concepts that are helpful to understanding effective use of formative assessment.

Formative Assessment Within a Theory of Learning and Instruction

Formative assessment is not necessarily associated with any particular theory of learning (Wiliam, 2010). However, current conceptualizations of formative assessment are typically rooted in a sociocultural constructivist view of learning (Heritage, 2010a; Pellegrino et al., 2001; Shepard, 2000). This theory of learning is supported by research (Pellegrino et al., 2001), is most compatible with current goals of education, and best explains the processes of effective formative assessment (Heritage, 2010b; Pellegrino et al., 2001; Shepard, 2000).

From a sociocultural constructivist perspective, learners are seen as actively constructing knowledge and understanding through cognitive processes (Piaget, 1954) within a social and cultural context (Greenfield, 2009; Rogoff,
1998, 2003; Vygotsky, 1978); as building new knowledge on what they already know (i.e., prior knowledge) (Bransford, Brown, & Cocking, 2000); and as developing the metacognitive skills necessary to regulate their own learning (Bransford et al., 2000; Bruner, 1985; Vygotsky, 1978). These understandings about learning and development have implications for the use of formative assessment in classroom instruction.

The work of Vygotsky (1962, 1978) forms much of the basis for current conceptualizations of the sociocultural aspects of constructivist learning theory and has been widely applied to models of formative assessment. Students are seen to develop knowledge and understanding in a domain over time, not only as individuals but in an interactive social context, guided by others with greater expertise (e.g., teacher, parent, peer) (Tharp & Gallimore, 1991; Vygotsky, 1978; Wenger, 1998). One assumption of sociocultural theory is that learning is enhanced by what Vygotsky referred to as “joint productive activity” within a social setting, such as in a classroom where students and teachers collaborate as a community of learners (Ash & Levitt, 2003; Koschmann, 1999).

The “zone of proximal development” (ZPD), a concept taken from Vygotsky (1978), has been invoked by formative assessment theorists as useful for understanding the gap between a student’s actual understanding and the student’s targeted or potential learning. The ZPD is the developmental space between the level at which a student can handle a problem or complete a task independently and the level at which the student can handle or complete the same task with assistance from a more competent other, such as a teacher. Work within the ZPD is a particular example of joint productive activity, that is, teacher and student are working jointly to ensure that the student reaches a learning goal (Ash & Levitt, 2003). In teaching, the teacher serves as a mediator between the student and the learning goal, providing scaffolding (i.e., learning support) to aid attainment of the goal (Black & Wiliam, 2009; Walqui & van Lier, 2010). Formative assessment is part of this process—whether implicitly or explicitly—as the teacher uses information about how a student responds to instruction in order to give feedback to the student and/or adjust instruction so as to prompt learning or performance. In this case, formative assessment is almost indistinguishable from instruction, as the teacher introduces content; assesses how the student is responding; offers supports for understanding and modifies instruction as needed; re-assesses how the student’s learning is progressing; continues with new content or returns in a new way to the same content, and so forth.

The Roles of Teachers and Students in Formative Assessment

The kind of classroom evoked by the sociocultural constructivist theory of learning is one in which teachers and students share responsibility for learning (Heritage, 2010a; Tunstall & Gipps, 1996). In this classroom, one would see teacher and students working together as part of an interactive community of learners, in roles that may be new to some (Brown & Campione, 1994; Rogoff, 1994), including engaging in formative assessment. Formative assessment calls upon teachers not only to determine whether students have learned something, but also to probe students’ ways of thinking to get at why any learning gaps exist. In addition to using assessment evidence to plan future instruction, teachers are expected to use it to help students (1) judge the state of their own knowledge and understanding, (2) identify the demands of a learning task, (3) judge their own work against a standard, (4) grasp and set learning goals, and (5) select and engage in appropriate strategies to keep their learning moving forward (Andrade, 2010; Black & Wiliam, 1998b, 2009; Bransford et al., 2000; Heritage, 2010b; Stiggins, Arter, Chappuis, & Chappuis, 2009). These metacognitive skills are critical to the development of intentional learning and of independent, self-propelled learners who can regulate their own learning and self-correct as needed (Bransford et al., 2000).

Students are expected to be active agents in their own learning by engaging, in increasingly independent ways, in the previously enumerated skills (Clark, 2012). As Black and Wiliam (2009) observe, “Since the responsibility for learning rests with both the teacher and the learner, it is incumbent on each to do all they can to...”
mitigate the impact of any failures of the other” (p. 7). International studies on the impact of formative assessment practices show that such practices can indeed support students’ ability to take responsibility for and regulate their own learning, but that this occurs only when students understand that assessment can serve purposes other than summative purposes (Organization for Economic Co-operation and Development, 2005). Perrenoud (1991) notes that formative assessment places demands on students to take a more serious approach to learning and to work harder—demands they may not happily embrace; however, when they do, they may be their own best sources of feedback about their own learning. Student self-assessment does contribute to higher student achievement, and it is most likely to do so when students are trained in using sets of performance criteria, such as rubrics, to evaluate their work or when they receive other direct instruction on self-assessment (Ross, 2006). While the self-assessments of students may not always be in sync with their teachers’ assessments of them, discrepancies can form the basis of “productive conversations about student learning needs” (Ross, 2006, p. 9).

Some forms of formative assessment require students not only to be active agents in their own learning but also to be, at times, facilitators of each other’s learning through a process of peer assessment. Peer assessment has students serving as instructional resources to each other in much the way that collaborative learning does (Black & Wiliam, 2009). Students’ feedback to each other during peer assessment is another source of information about their level of understanding (Black & Wiliam, 2009). For students to adopt such roles requires that they have a clear understanding of learning goals and performance criteria. Some suggest having teachers and students jointly construct assessment criteria in order to increase the reliability of peer assessment (Topping, 2010) or having teachers model the process for students in order to facilitate their participation (Black & Wiliam, 2009, p. 25).

The Role of Learning Progressions in Formative Assessment

A learning progression is a kind of developmental model (Harris, Bauer, & Redman, 2008) that describes “the trajectory of learning in a domain” over an extended period of time—months to years (Heritage, 2008, p. 3). Learning progressions, also known as “learning trajectories” (Sztajn, Confrey, Wilson, & Edgington, 2012) and “progress maps” (Hess, 2010), have been defined as “descriptions of successively more sophisticated ways of thinking about an idea that follow one another as students learn: [The descriptions] lay out in words and examples what it means to move toward more expert understanding” (Wilson & Bertenthal, 2006, p. 3). Learning progressions help teachers decide where to take instruction next, based on what they have observed students being able to do independently and with support (i.e., within the ZPD).

Learning progressions are intended to help teachers organize the curricular topics associated with standards. In some cases, learning progressions can be constructed logically, with reference to what experts in a domain perceive as a necessary sequence. For example, in a mathematics curriculum, addition logically precedes multiplication because multiplication is repeated addition and because a child is unlikely to have avoided learning addition before being able to understand multiplication (Leahy & Wiliam, 2011). In other cases, the “logical” progression may not capture a learner’s likely developmental path. In addition, learning progressions may vary to some degree from student to student and from country to country. For these reasons, there is no substitute for empirical validation of a learning progression.

Learning progressions or trajectories can help teachers to anticipate and identify common misconceptions students may have and, thus, to shape feedback—which, in turn, reshapes learning (Sztajn et al., 2012). Sztajn et al. write of “learning trajectory based instruction” as a promising approach.
that brings teaching and learning theory together in a way not previously done: “Overall, we contend that, despite disciplines, when teachers organize teaching around learning from [a learning trajectory] perspective, the trajectory serves as the unifying element for their instruction” (p. 152).

Very few learning progressions have been empirically validated, so almost any available one needs to be viewed as a tentative heuristic—a way of helping teachers think about learning development in a given domain—as opposed to a map that is faithful to the terrain. Heritage (2008) summarizes seven sample learning progressions in mathematics, history, science, and oral language, as well as a tool that teachers can use to develop their own progressions in science (“Conceptual Flows” [DiRanna et al., 2008]). It is not clear, from her review, whether some or all of the progressions have been empirically validated or are based on logical progressions as identified by domain experts. Sztajn et al. (2012) refer to several different efforts to develop dozens of learning progressions related to different subdomains of mathematics.

Learning progression research is complex and time-consuming, and generalizing on the basis of such research is somewhat risky because of differences in context. Recently, researchers validated a learning progression for linear measurement in grades 2 and 3 (Barrett et al., 2012). They caution, however, that this learning progression is preliminary, having been tested with only eight students. There is currently no standard way of approaching the framing of learning progressions. Sztajn et al. (2012) note that the progressions resulting from these efforts “varied in span, grain size, use of misconceptions, and level of detail” (p. 148).

Research shows that cognitive development in a domain does not necessarily follow a linear path (Harris et al., 2008; Shavelson & Kurpius, 2012; Steedle & Shavelson, 2009). Moreover, “[p]rogressions are not developmentally inevitable but dependent on instruction interacting with students’ prior knowledge and new-knowledge construction” (Shavelson & Kurpius, 2012, p. 15). Whereas there is not likely to be a single progression for any complex learning goal, many believe that educators will be able to identify paths that are consistent with the ways that many students learn (Mosher, 2011). These common paths can be annotated by teachers as they observe differences in students; this is a necessary step to providing differentiated feedback and instruction for learners who veer from the common path.

Much research remains to be done on learning progressions. Researchers at the Center for Policy Research in Education conclude, “If this work is pursued vigorously and rigorously, the end result should be a solid body of evidence about what most students are capable of achieving in school and about the particular sequence(s) of learning experiences that would lead to proficiency on the part of most students” (Corcoran, Mosher, & Rogat, 2009, p. 8). Shavelson and Kurpius (2012) believe that experimental research, as well as action research by teams of teachers and researchers, may yield knowledge of how to proceed with the development of defensible learning progressions.

Even though there are not empirically validated developmental sequences for the major concepts and skills in every academic domain, the concept of learning progressions is likely to be helpful to teachers in conducting and interpreting formative assessments. The hypothesized progressions may guide teachers’ explorations of student learning through formative assessment, their decisions about developmentally appropriate feedback to students, and their planning of next instructional steps.

Formative Assessment Within Measurement Theory

The role of measurement theory with regard to formative assessment is somewhat contested; it is not altogether clear whether and, if so, how and to what degree accepted measurement principles should guide formative assessment (Bennett, 2011). This section discusses ways in which established thinking about measurement in general may contribute to conceptualizing and designing effective formative assessment, as well as ways in which traditional practices based on principles of measurement theory may not be applicable to formative assessment. The
section concludes with a discussion of why language and culture should be considered when planning and implementing formative assessment, so as not to bias results.

As in other forms of assessment, the primary activity for the person using formative assessment results is to reason from evidence—to make an inference about what a student knows and can do, based on assessment information that is not perfect and may be, to some degree, incomplete or imprecise.

As in other forms of assessment, the primary activity for the person using formative assessment results is to reason from evidence—to make an inference about what a student knows and can do, based on assessment information that is not perfect and may be, to some degree, incomplete or imprecise.

Measurement theory also provides statistical methods to assess the qualities of inferences. In large-scale assessments of achievement—such as statewide testing for school accountability—reliability, validity, and fairness are examined in statistical studies that are based on measurement models about the factors that influence student performance on tests. These statistical methods would not be helpful in formative assessment conducted in classrooms, for a couple of reasons. First, they require performance information from a large number of students, on a large number of tasks, possibly from multiple occasions. In classrooms, a teacher might use a particular assessment technique simply to evaluate a few students in a brief segment of a class discussion. Second, the statistical analyses generally are built on theories of test interpretation that summarize the quantity, rather than the qualities, of student knowledge. Thus, the interpretations would focus on whether a student's test performance indicated that the student had acquired an adequate level of knowledge, rather than focusing on the nature of the student's reasoning or the patterns of thinking displayed by the student. It is this last type of information that generally is useful to teachers in understanding what students know and what they still need to learn.

Exploration of the qualities of inferences derived from formative assessment is in its infancy. Still to be investigated are such issues as how the types of strategies that teachers use in formative assessment affect the quality of evidence elicited from students, whether the strategies are interchangeable with regard to the instructional decisions to which they lead, and whether the strategies differ in effectiveness for different students (Brookhart, 2003, 2005; Shepard, 2009).

There are good reasons to believe that concerns for reliability, validity, and fairness are mitigated by the nature of how formative assessment is carried out. With formative assessments, teachers can evaluate students frequently via different strategies that can be tailored to the particular students (Durán, 2011). In formative assessment, Shavelson et al. (2007) argue, issues of reliability and validity are addressed over time, as teachers collect ongoing data about student performance and, as appropriate, make corrections to their previous inferences. Teachers are in an ideal position to adjust their methods to probe information that will resolve any
discrepancies or to test competing hypotheses as to why students respond the ways they do.

Useful Principles of Assessment Design

An understanding of fundamental principles of assessment design can be useful to teachers in their efforts to obtain high-quality information from students. One useful heuristic is an assessment triangle that shows the three elements present in any type of assessment: a model of student cognition, which describes how students develop competence in an academic domain and how they organize their knowledge at different levels of development; observations, which are the tasks or activities in which students’ performance can be observed, scored, and evaluated for the purpose of gathering evidence of learning; and interpretation, which is the rationale for making sense of and deriving inferences from the evidence gathered (Pellegrino et al., 2001, pp. 44–51). Whether or not they are made explicit, these elements are equally present in any instance of assessment, including formative assessment, and the quality of inferences derived from the assessment will depend on how well these three elements have been linked (Pellegrino et al., 2001). In formative assessment, a fourth element needs to be present: effective translation of the interpretation of assessment performance to instructional decisions and actions.

One approach to assessment development that makes explicit, and links, the three elements of the assessment triangle is Evidence Centered Design (ECD) (Mislevy, Steinberg, & Almond, 2003; Zhang et al., 2010). ECD provides a framework for building valid and fair assessments. In this process, assessment developers identify the nature of the evidence that is needed to make a judgment about specified aspects of student learning; then, they examine any proposed assessment task to ensure that it does not preclude or reduce the opportunity for any student to participate in the task and show certain knowledge, skills, and abilities (KSAs). Sometimes an assessment task, including a formative assessment, may call on additional, unwanted (non-target) KSAs, and the task may end up eliciting evidence not only of the target KSAs but also of language skill or some other skill not related to the concepts ostensibly being assessed. In such a case, lack of proficiency with non-target KSAs can prevent the student from demonstrating proficiency with the actual targets of the assessment, limiting the assessment’s fairness and the validity of inferences derived from it. An example would be a task designed to evaluate students’ understanding of a mathematical concept by having students solve a problem that is couched in many pages of text. Performance on the task would be influenced not only by the target KSA—that is, knowledge of the mathematical concept—but also by the non-target KSA—that is, ability to read extended text. The following series of questions (based in part on Harris et al., 2008) are useful when developing formative assessment activities in general, but can also help teachers develop assessment processes and tools that minimize the intrusion of unwanted KSAs and increase the likelihood of making valid inferences about student learning:

» What KSA(s) do I wish to assess (e.g., knowledge, skills, processes, understanding toward competency in a particular part of a domain)?

» What is the cognitive/developmental path (i.e., learning trajectory) I would expect to see with regard to these KSAs?

» What evidence (i.e., observable features of students’ performances and responses) would I need in order to determine the student’s level of KSAs?

» What are the characteristics of tasks that will elicit this evidence?

» What KSAs that are not wanted (e.g., unnecessarily complex language, need for speed of response) might this type of formative assessment process introduce?

» How can I modify my formative assessment process to make it inclusive for all students, to minimize the impact of non-target KSAs?

Non-target KSAs are most commonly introduced unwittingly by unnecessarily complex language and/or by content or processes unfamiliar to students from particular cultural backgrounds. The following section shows how this can happen and offer suggestions for avoiding such problems.
Language and Culture in Formative Assessment

Language is the principal medium for teaching and learning (Bailey, Burkett, & Freeman, 2008), for mentally representing and thinking through problems (Durán, 1985; Lager, 2006), and for gaining an understanding of how other people think (Bronkart, 1995). As Bailey et al. (2008) write, “Classrooms are first and foremost, language environments” (p. 608). However, teachers are generally not educated to think linguistically (Bailey et al., 2008), to see how language is an integral element in all teaching and learning. Hence, language is often a kind of silent partner in instruction and assessment. This is unfortunate because good teaching depends on a teacher’s considerable knowledge of language development and the use of language in learning—a grounding in the fundamentals of educational linguistics (Wong Fillmore & Snow, 2000).

Students’ responses to formative assessments, which teachers expect to interpret as evidence of students’ content knowledge or skill, may be affected by students’ relative familiarity with the forms and uses of language in the assessment tasks. For example, a student may not understand the grammar (form) of a question or may lack the skills to mount an evidence-based argument (one use of language) to respond to the question adequately. The language forms and uses found in students’ classrooms, in both instruction and assessment tasks, may be more familiar or less familiar to students, depending on the dialects of English spoken at home, the purposes for which their parents use language, the influence of another language or culture, their prior knowledge and past experience (related to opportunities to learn), their socioeconomic status, and a host of other factors (Heath, 1983; Ochs & Schieffelin, 2011; Solano-Flores & Trumbull, 2003).

When educators consider the role of language in assessment, the needs of students who are English language learners may come quickly to mind. These students are learning a new language at the same time they are learning content in that language, learning the specialized discourse of the different subject-matter domains, and learning how to use language as a tool for learning and for demonstrating their learning (Abedi, 2010, 2011; Bailey et al., 2008; Lee, Santau, & Maerten-Rivera, 2011; Trumbull & Solano-Flores, 2011). With these issues in mind, teachers will want to evaluate their formative assessment practices with a view to reducing language demands, providing choices in the ways they expect students to demonstrate understanding of a concept, and rewording the language of an assessment when apparently needed. They can also ask students directly about how they, the students, interpret assessment questions or tasks (Basterra, 2011; Lee et al., 2011; Spinelli, 2008). A student’s difficulty in interpreting the meaning of an assessment question is itself a clue to the presence of one or more non-target KSAs.

Formative assessment activities can be designed to be credible sources of learning evidence with students who are English language learners (Kopriva & Sexton, 2011). However, having good information about a student’s level of English proficiency is critical to planning appropriate formative assessment processes. Abedi (2010) and others recommend that teachers use the formative process itself to gather and make note of information about students’ levels of English knowledge on a continuous basis. A teacher is in a better position than an outside specialist to observe language use in a range of circumstances and to make judgments about a student’s ability to use language as a medium of learning and assessment.

In written assessments, it is advisable to avoid high-level vocabulary not related to the learning goal being assessed, eliminate complex syntax, and avoid the passive voice (Abedi, 2006)—for any student, not just for English language learners. (See Trumbull & Solano-Flores [2011] for a list of linguistic features to avoid, with explanatory examples.) Unnecessary language complexity is probably the greatest source of non-target KSAs for a great many students (Trumbull & Solano-Flores, 2011). In spoken language, there are opportunities for a teacher to clarify language, and he or she may want to model language that is slightly beyond a student’s level so as to encourage language growth (by working in the ZPD).

Students who are poor readers or have a developmental language problem, but who (given appropriate supports) have the intellectual capacity to learn the taught curriculum, are also penalized
by instructional and assessment uses of language that do not take their needs into account (Fuchs et al., 2007; Lerner, 2000; Troia, 2011). A more complex challenge in formative assessment emerges for students who have a language-based learning disability and are also English language learners (Figueroa & Newsome, 2006; Hoover & Klingner, 2011). Experts in the education of these students see value in formative assessment processes precisely because such assessment is tailored to the students’ contexts and can be used on a continuing basis to monitor student progress (National Joint Committee on Learning Disabilities, 2010; Hoover & Klingner, 2011). Should a student need a higher level of intervention, the teacher will have important evidence about the student’s needs, from formative assessment, which he or she can share with specialists evaluating the student and with parents.

Cultural differences in students’ orientation to language use, as well as their orientation to assessment, must be considered if formative assessment is to be valid and fair. Any use of language in the education process has cultural underpinnings—that is, culture-based assumptions about what is appropriate or acceptable (Trumbull & Solano-Flores, 2011). All students face the task of learning how classroom discourse and the discourses of different subject-matter domains work. But, based on their home language and/or culture, some students may less prepared for this task than others, because they may not be oriented to the dominant culture’s ways of using language, which are reflected in the classroom (Heath, 1983; Schleppegrell, 2004). These kinds of differences have implications for formative assessment. For example, in some families, parents may routinely talk with their children about how they are progressing in learning a particular skill or what they may be able to do next (Moss, 2008). In other families, such conversations are not common, and, when asked to engage in an evaluative conversation about learning, their children may need more teacher modeling and more time to develop comfort and skill with this process. Explaining the school’s expectations to parents while, at the same time, respecting parents’ differences in expectations for children may be an important step for teachers to take. If parents believe that children learn best by listening and showing respect for the teacher, they may discourage the very behaviors that teachers are trying to elicit (Greenfield, Quiroz, & Raeff, 2000). It is not surprising that cultural orientation has been shown to affect students’ ways of approaching tests or test items (Demmert, 2005; Li, Solano-Flores, Kwon, & Tsai, 2008; Swisher & Deyhle, 1992). In fact, the expectations for how to communicate during assessment, whether formal or informal, constitute what is, in effect, a “cultural script” (Emihovich, 1994).

Students’ cultural backgrounds influence their beliefs about social roles in the classroom, the purpose of schooling, how to use language in the learning process (Bransford et al., 2000; Goldenberg & Gallimore, 1995; Greenfield, Suzuki, & Rothstein-Fisch, 2006; Greenfield, Trumbull et al., 2006), and how and when to demonstrate one’s knowledge and understanding—an area entirely germane to formative assessment (Nelson-Barber & Trumbull, 2007). For example, when asked to name birds that live in a particular habitat, children from some cultural backgrounds may respond with stories of family outings that include sightings of birds, rather than the expected scientific discourse that focuses on observations or facts about birds, abstracted from experience or instruction (Trumbull, Diaz-Meza, & Hasan, 1999). This is because, in these students’ homes, social and cognitive learning are seen as integrated, not separable. In such a case, if the teacher responds by discouraging personal stories, he or she may suppress students’ participation in discussion. Instead, the teacher can demonstrate to students how to extract from their experiences what they have
learned about birds and record it on the board or in their journals (Trumbull et al., 1999).

Informal questioning, the most common form of formative assessment, may not always be the best way to assess students who are still learning English or who are from communities where English is used in ways different from those expected in the classroom. Such students may misconstrue the intent of a teacher’s question, may thus respond differently than expected, and may then be misjudged about their understanding (Greenfield & Cocking, 1994). Among Native American groups, a “right/wrong” approach to knowledge is not culturally congruent: Many such students have been socialized to consider all sides to a question and to avoid dichotomous (e.g., right/wrong) thinking. Historically, in federal boarding schools and (more recently) in classrooms using scripted basic skills programs, Native American students have suffered through direct questioning approaches, often responding with silence rather than participating in the question/answer ritual (McCarty, 2002). A recent study showed that teachers’ oral questioning during discussions was negatively associated with Native American and Alaska Native students’ later mathematics performance (Huang, Nelson-Barber, Trumbull, & Sexton, 2011). Likewise, an inquiry approach that requires students to reason aloud, on demand, about a question may be particularly uncomfortable for Native American and Alaska Native students who have learned at home to observe and mentally rehearse any complex task before attempting public performance (Swisher & Deyhle, 1995). Teachers not privy to the communication norms in some communities may at times be introducing non-target KSAs into assessment by using the very formative assessment practices that are most accepted (e.g., questioning students during a whole group discussion).

Cultural differences may also be associated with differences in responses to various forms of feedback (Hattie & Timperley, 2007; Kaplan, Karabenick, & De Groot, 2009; Maehr & Yamaguchi, 2001; Otsuka & Smith, 2005; Trumbull & Rothstein-Fisch, 2011). For example, some students may be uncomfortable with praise, particularly if it is given publicly (Markus & Kitayama, 1991; Rothstein-Fisch & Trumbull, 2008); they may be more motivated by negative feedback and criticism, at least in part because of a cultural value of working to meet the expectations of teachers and family (Heine, Takata, & Lehman, 2000). Teachers need to observe how their particular students respond to various forms of feedback in order to tailor feedback to those students’ needs.

Given a basic understanding of how linguistic and cultural factors may intersect with formative assessment processes and tasks, educators can be alert to sources of non-target KSAs in order to achieve what has been called “cultural validity” in formative assessment (Solano-Flores & Nelson-Barber, 2001). Cultural validity is achieved when an assessment takes into consideration students’ sociocultural backgrounds, including their cultural worldviews, their life contexts and values, the kinds of home and school experiences they have had (i.e., the foundation of their prior knowledge), their language preferences and proficiency, and their ways of using language to communicate and learn. Because formative assessment has the flexibility
to incorporate attention to context, it can more easily address issues of cultural validity.

Research into the Effectiveness of Formative Assessment

Formative assessment has been highly touted for its purported positive impact on student learning (Black & Wiliam, 1998a; Organization for Economic Co-operation and Development, 2005). Black and Wiliam (1998), reviewing some 681 publications on studies related to formative assessment, concluded that “attention to formative assessment can lead to significant learning gains” (p. 9) and asserted that there is no evidence to suggest that it may have negative effects. However, caution should be exercised in making an uncritical endorsement of formative assessment (Bennett, 2011; Dunn & Mulvenon, 2009; Kingston & Nash, 2012a; Shepard, 2010).

Another issue is that the body of research on which claims of the positive impact of formative assessment are based is relatively small, and many of the relevant studies do not have the methodological rigor to support conclusions about the effectiveness of formative assessment. Most claims about the benefits of formative assessment begin with the Black and Wiliam (1998a) review of research on formative assessment. Their review is often referred to as a “meta-analysis,” but, as the authors themselves observe, a true meta-analysis was not feasible for them because the studies they used represented such a wide range of practices and research methods. What the studies they reviewed had in common was teachers’ use of some of the features of formative assessment (e.g., feedback, teacher questioning, student self-assessment); these features were associated with moderate-to-large effect sizes. Bennett (2011) suggests that the characterization of Black and Wiliam’s review as a meta-analysis is education’s equivalent of an urban legend.

A recent meta-analysis of studies on the impact of formative assessment on K–12 student achievement concludes that, if only the studies hewing to rigorous methods are examined, the effect sizes of formative assessment are quite modest (a mean of .20); however, the effects are usually positive (of the 42 effect sizes reported, only 7 were negative), and some positive effects are greater than others (Kingston & Nash, 2012a). This meta-analysis has been criticized for the methods it employed, leading to a debate as to whether the findings were limited by the methodology (See Briggs, Ruíz-Primo, Furtak, Shepard, & Yuen, 2012; Kingston & Nash, 2012b).

In other summaries, implementation of particular formative assessment strategies that teachers had learned in professional development sessions resulted in an average effect size of .30 (Wiliam, Lee, Harrison, & Black, 2004), and use of a computer-based formative assessment system of writing resulted in an effect size of .28 (Rich, Harrington, Kim, & West, 2008).

There is some suggestion in the research literature as to why the effects of formative assessment are not as large as one might expect: Teachers are unsure what to do in response to what they learn about their students from formative assessment. The evidence gathered through formative assessment should be used to determine whether instruction needs to be modified and, if so, how. However, this part of the formative assessment cycle often falters: Teachers may succeed in gathering evidence about student learning and may accurately interpret the evidence to identify what knowledge a student lacks, yet may not be able to identify, target, and carry out specific instructional steps to close the learning gaps (Heritage, et al., 2009; Herman et al., 2006).

Conclusion

Formative assessment is not new. Though they may not have called it by that name, effective teachers have always probed, in the course of their instruction, to understand students’ thinking and learning. Through questioning and observation, among other activities, they have strived to
see behind the curtain, to expose why and how their students might get stuck or go off track. These teachers have taken what they have learned about their students and used that knowledge, along with their knowledge of pedagogy and the subject of study, to provide actionable feedback to students and to tailor their teaching to meet students' learning needs.

Shavelson (1973) noted that “any teaching act is the result of a decision... that the teacher makes after the complex cognitive processing of available information,” and he argued that “what distinguishes the exceptional teacher from his or her colleagues is not the ability to ask, say, a higher-order question, but the ability to decide when to ask such a question.” That decision, according to Shavelson, would incorporate information about students’ understanding of course material and how alternative teaching actions would affect students’ understanding.

As educators and researchers have been examining how teachers use assessments to inform instruction, it has become clear that conducting formative assessment is not only a complex process but one that requires extensive knowledge, including knowledge about student learning, domains of study, assessment, and pedagogy. Teachers must make any act of formative assessment contingent on what has been taught and on how students have responded to the teaching, and they must shape modifications to instruction in ways that make sense for students at different developmental levels within particular domains of study. There is no prescription for how to tailor formative assessment to meet the needs of a particular classroom or student, but this tailoring is what good teaching demands of teachers. Thus, the full burden of implementing formative assessment falls on the teacher.

While there are efforts to develop supports for teachers who want to use assessments formatively, there is much work to be done. Research into learning progressions—those cognitive models of knowledge development within specific domains—may eventually provide teachers with validated models that they can use to guide formative assessment. Professional development and coaching on formative assessment may advance teachers’ skill in using assessment to provide feedback to students and to inform their own instruction; advances in technology may help teachers meet the challenges of tailoring assessment and instruction to individual students. And the growing demand for balanced assessment systems presents both a rationale and an opportunity for the field to refocus some of the attention that is currently given to assessment onto classrooms and the important activities of teachers and students working to promote learning.

References

annual meeting of the American Educational Research Association, New Orleans, LA.

Li, M., Solano-Flores-G., Kwon, M., & Tsai, S. P. (2008, April). “It’s asking me as if I were the mother”: Examining how students from different groups interpret test questions. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Baltimore, MD.

